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The retreat of Arctic sea ice is enabling increased
ocean wave activity at the sea ice edge, yet the
interactions between surface waves and sea ice
are not fully understood. Here, we examine in
situ observations of wave spectra spanning 2012–
2021 in the western Arctic marginal ice zone
(MIZ). Swells exceeding 30 cm are rarely observed
beyond 100 km inside the MIZ. However, local wind
waves are observed in patches of open water amid
partial ice cover during the summer. These local
waves remain fetch-limited between ice floes with
heights less than 1 m. To investigate these waves
at climate scales, we conduct experiments varying
wave attenuation and generation in ice with a global
model including coupled interactions between waves
and sea ice. A weak high-frequency attenuation
rate is required to simulate the local waves in
observations. The choices of attenuation scheme
and wind input in ice have a remarkable impact
on the extent of wave activity across ice-covered
oceans, particularly in the Antarctic. As well as
demonstrating the need for stronger constraints on
wave attenuation, our results suggest that further
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attention should be directed towards locally generated wind waves and their role in sea ice
evolution.

This article is part of the theme issue ‘Theory, modelling and observations of marginal ice
zone dynamics: multidisciplinary perspectives and outlooks’.

1. Introduction
As sea ice retreats and exposes larger open-water areas in the Arctic Ocean, interactions between
ocean surface waves and sea ice may play an elevated role in the Arctic climate system [1]. Wave-
ice interactions typically occur in the marginal ice zone (MIZ), the partially ice-covered region
that separates interior pack ice from open ocean. The fracture of sea ice by ocean surface waves in
the MIZ may affect regional climate feedbacks through enhanced sea ice melt (e.g. [2]) motivating
the development of fully coupled wave-ice models in recent years (e.g. [3,4]).

However, significant uncertainty remains in our understanding of fundamental aspects of
wave-ice physics [5,6]. A major obstacle is that observations of waves in polar oceans are rare and
hard to obtain, and existing in situ datasets sample a limited range of ocean and sea ice conditions
[7]. Despite recent progress (e.g. [8–10]), comprehensive datasets from remote sensing are not yet
available. These observing challenges leave us with only weak constraints on the ocean surface
wave climate in sea ice.

Swell, low-frequency ocean surface waves that have developed in open ocean areas, can
propagate into the MIZ and decay with distance inside the sea ice edge. Many studies have
considered the attenuation of swell waves in sea ice, but the theory has not yet converged on
a definitive explanation [11]. A wide variety of attenuation schemes have been proposed based
on different theoretical frameworks and observations [12–14], and their respective impacts on
wave climate have not yet been systematically investigated.

Besides propagation of swell, ocean surface waves may also be generated inside the sea ice
edge by local winds. In contrast to the large body of work on the attenuation of swell and its
incorporation into numerical models, less focus has been directed toward these high-frequency
wind waves. According to [15], wind waves tend to dissipate during their first 10–20 km of travel
into the sea ice field. However, in [16] a model was developed explaining how local wind waves
can be generated anew in areas of low sea ice concentration (SIC) and sparse ice floes. Using
surface buoy measurements, [17] found support for the open-water distance between floes as a
control parameter for local wave energy. We are not aware of theories that explain how wind
input for wave growth is modified in partial ice cover. The simple assumption in current wave
models scales the wind input by the open-water fraction [18]. The importance of local wind-wave
generation in partial ice cover for Arctic climate remains unclear.

Here, we leverage multi-year in situ observations from two recent field campaigns in the
Western Arctic: the Beaufort Gyre Observing System (BGOS) and Stratified Ocean Dynamics in
the Arctic (SODA). In contrast to previous case studies, these data from subsurface moorings offer
a long-term view of fundamental properties of waves in ice. We examine the significant wave
heights, the wave spectra, and the prevalence of wind waves and swell in observations. We aim
to explore whether and how small-scale processes captured in these observations might play a
role in large-scale Arctic and Antarctic climate. We use a global coupled wave-ice model [3] (with
a spatial resolution of 50 km) to simulate spectra and to quantify the extent of sea ice affected by
ocean surface waves. We investigate how this quantity and how wave spectra in ice are affected by
uncertainty in wave-ice physics, and our results highlight specific areas that should be addressed
in the development of climate-scale coupled wave-ice models.

The paper begins with descriptions of observations from BGOS and SODA in §2a and the
coupled wave-ice model in §2b. We present results from the observations grouped by distance
inside the ice edge in §3a. In §3b we compare results from wave-ice model sensitivity experiments
with observations, and in §3c we explore how varying wave-ice physics affects the wave climate
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Table 1. Summary of in situ observations.

dataset instrument period lat., lon. open watera 0–100 kma > 100 kma

BGOS-A AWAC 2012–21 75 N, 150 W 5796 54 70
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BGOS-D AWAC 2013–20 74 N, 140 W 2481 131 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SODA-A Signature500 2018–19 73 N, 148 W 1096 39 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SODA-B Signature500 2018–19 75 N, 146 W 314 97 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SODA-C Signature500 2018–19 78 N, 139 W 0 0 11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BGOS-SODA total 9687 321 98
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aCount of validwavemeasurements in samplewith significantwaveheight exceeding the0.3 mapproximate detection limit; data are grouped
by distance inside the ice edge (�dist), defined in §2c.

in sea ice across each hemisphere. In §4, we discuss implications for seasonal ice melt and future
modelling efforts. We conclude in §5.

2. Methods

(a) In situ observations
We use subsurface-mooring observations obtained from two separate field campaigns:

(i) BGOS [19] includes two subsurface moorings with upward-looking Nortek Acoustic
Wave and Current (AWAC) instruments for surface tracking. BGOS-A and BGOS-D
sample every hour and began collecting measurements in 2012 and 2013, respectively.
Raw data are processed into wave spectra following [20–22] as in [1,17]. BGOS data are
mostly continuous from 2012 to 2021 [23].

(ii) SODA includes three subsurface moorings using the upward-looking Nortek Signature
Doppler profiler for acoustic surface tracking. Raw data from SODA are quality-
controlled using methods comparable to the BGOS methods, producing measurements
of surface wave spectra sampled every 2 h. SODA data span 2018–2019 [24].

The aggregate dataset (denoted as BGOS-SODA) spans 2012–2021 and five locations in the
central Beaufort Sea (table 1 and figure 1). Both sets of subsurface moorings detect surface
gravity waves via altimeter measurements of surface displacement. A nuance of the moorings
(compared with surface buoys, for example) is that the moorings’ surface tracking simultaneously
measures surface gravity waves and sea ice draft. The spectral signal from surface waves can
be distinguished from that of the sea ice bottom during the quality-control process—additional
details are included in the electronic supplementary material, §S8—ensuring that the ocean wave
data represent surface waves, not ice draft.

(b) Coupled wave-ice model experiments
We conduct a series of experiments using the CICE5 sea ice model [27], coupled by Roach
et al. [3] to the WAVEWATCH III� v. 5.16 ocean-surface-wave model (WW3) [28]. Instead of
taking prescribed ice conditions as input and only predicting the waves (as in operational wave
forecasts), both the ice and the wave conditions are freely evolving on a global domain. The global
coupled wave-ice model is forced by the JRA-55 atmospheric reanalysis [29,30] and coupled
to a slab ocean model [31], which includes annually periodic ocean surface currents. CICE5 is
modified to treat the joint floe size and thickness distribution (FSTD) as in [3,32]. The integral of
the FSTD over all thicknesses is the floe size distribution, which evolves prognostically subject
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Figure 1. (a) Synthetic aperture radar (SAR) [25,26] from 28 July 2018 showing ice floes (in off-white) in the central
Beaufort Sea during the summer melt, corresponding to the purple box marked in b. (b,c) SIC (colour shading) and
corresponding distance inside the ice edge (�dist, contour lines every 100 km from 0 to 500 km) on the same day from
(b) passive microwave satellite observations and (c) the coupled wave-ice model (FSD-M21 case). The 0 km-distance contour
denotes 15% SIC. Red symbols in b show locations of in situ observations. Red box in c shows the region we define as the central
Beaufort region for analysing model output. (Online version in colour.)

to lateral growth and melt, welding of floes in freezing conditions, wave-induced floe fracture
(following [33]) and wave-dependent new ice formation [3,32].

The sea ice and wave models are on a displaced-pole nominal 1◦ grid (gx1v7), and the size
of model grid cells near observations in the Beaufort Sea is approximately 50 km × 50 km. This
model is the same as FSD-WAVEv2 in [3], except that (i) we use a higher wave-ice coupling
frequency, exchanging the wave spectrum and SIC, thickness, and mean floe size every hour
to better resolve short-time-scale wave-ice interactions; (ii) we modify the numerical approach
such that the source term for wave-ice interactions in WW3, Sice, is applied alongside the other
source terms without time-splitting (which appears to be impactful for the nominal 1◦ resolution);
and (iii) we use WIFF1.0 [34] for floe fracture, which is a computationally efficient version of the
parametrization in [33] developed using machine learning. In WW3, the global timestep is set
to 1800 s, the spatial propagation is set to 600 s, the intra-spectral propagation is set to 1800 s,
and the minimum source-term step is set to 20 s. The model spin-up period covers 2000–2018,
and sensitivity experiments with varied attenuation schemes are run for one year each, branched
from the spin-up at 1 January 2018. We analyse hourly output from 2018, which is during the
BGOS-SODA observing period and enables comparisons to be made between the model and
observations from the western Arctic.

The experiments (table 2) test a wide range of attenuation rates α that vary in how they depend
on frequency and on wave-ice attributes (α is illustrated in the electronic supplementary material,
figure S1). We test the six IC4 attenuation methods included in WW3 [28,39], as well as the
attenuation scheme used by Roach et al. [3], denoted as FSD-M21. FSD-M21 is an empirical fit
to the floe-scattering theory of [41] with supplemental dissipation for long wavelengths, and it
depends on mean floe size and mean ice thickness. We use FSD-M21 during model spin-up. The
attenuation schemes tested here are not exhaustive. WW3 includes schemes outside of the IC4
framework (such as IC2+IS2 [43,44]), and there are others (e.g. [45]) not yet in WW3 that could be
tested in future versions of the model.

By default, the wave source terms in WW3 v. 5.16 are scaled by the open-water fraction,
1 − SIC. This default scaling reduces the source to zero when SIC = 100%. Because the effect
of ice cover on wind input Sin is uncertain, we run two sets of experiments: one that uses the
default scaling and another that allows some wind input to persist when the SIC reaches 100%.
The ‘enhanced wind input’ experiments scale Sin by 1 − SIC/2, which forces Sin to go from its
full value to half-strength as SIC goes from zero to 100%. The ‘enhanced wind input’ is not a
physically plausible parametrization, but it provides a hypothetical upper bound on the potential
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Table 2. Summary of model experiments (varying attenuation rates).

experiment α: T = 2.5 sa reference α dependencies

IC4M1 4 × 10−4 [35] period only as exponential function
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IC4M2 2 × 10−3 [36] period only as fourth-degree polynomial
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IC4M3rad1 2 × 10−1 [33,37] period; ice thicknessb
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IC4M4 1 × 10−5 [38] depends only on significant wave height (Hs)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IC4M5 2 × 10−4 [39] period only as piecewise step function (electronic
supplementary material, figure 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IC4M7 1 × 10−2 [40] period; ice thickness
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FSD-M21 5 × 10−3 [41] period; mean floe radius, mean ice thickness
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aAttenuation rateα at high-frequency reference of 0.4 Hz (period T = 2.5 s), thickness 0.5 m, significant wave heightHs = 1.0m (for IC4M4)
and floe radius 100 m (for FSD-M21).
bα varies with floe size in [33] but has a constant floe radius of 1.0 m specified in WW3 [42].

impact of wind input in ice-covered seas. In all experiments, we maintain the default scaling on
the nonlinear source, Snl (see discussion in [46,47]). WW3 also includes a linear source Sln that
supports initial wave growth. In all experiments, we remove any scaling on Sln to allow new
wave growth in ice. This decision is based on observations of local waves inside the ice edge,
which are described in §3a.

(c) Distance inside the ice edge
To enable comparison between observations and the wave-ice model with climate-scale
resolution, we group wave data based on distance inside the ice edge, �dist, defined here as the
haversine distance to the nearest ocean grid cell with SIC less than 15%. Note that �dist does not
directly represent the distance along which wave attenuation occurs. The distance into the ice
that a wave will travel before full dissipation depends on its direction of propagation, whereas
�dist quantifies the separation from open ocean. For simplicity, we show three �dist groups: open
water (SIC < 15%), 0–100 km �dist (equivalent to approximately two 50 km × 50 km model grid
cells) and >100 km �dist. We estimate �dist for each in situ observation using the NOAA/NSIDC
climate data record (CDR) of SIC, a daily satellite product from passive microwave observations
[48–50]. We interpolate the CDR observations to the model grid. In using �dist for our analysis,
we aim to describe the large-scale transition from open ocean to pack ice (rather than resolve
individual leads or small-scale patches of open water).

3. Results

(a) Observed wave spectra in the Beaufort Sea
We begin by considering the distribution of significant wave height, Hs, in the BGOS-SODA
dataset (figure 2a–c). In open water (SIC < 15%, figure 2a), there is a maximum Hs of 4.2 m and
a peak occurrence between 0.5 m and 0.7 m. Approximately half of the open-water observations
have Hs exceeding 1.0 m. Note that we have not controlled for distance outside of the ice edge;
some observations are made where SIC is small but non-zero, while others are very far from any
sea ice. At 0–100 km �dist (figure 2b), the distribution has a thicker tail and a maximum Hs at 3.6 m.
The peak occurrence is between 0.3 m and 0.5 m, where the lower bound is at the detection limit.
Approximately one-third of the 0–100 km �dist observations have Hs exceeding 1.0 m. Beyond
a �dist of 100 km (figure 2c), the distribution peaks between 0.4 m and 0.6 m. No observations
exceed 1.0 m Hs at �dist > 100 km. While it is conceivable that the mooring altimeters could fail
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Figure 2. Wave properties in observations from the aggregate BGOS-SODA dataset in the Beaufort Sea, grouped by �dist

column-wise. (a–c) Histograms of significantwave heightHs, (d–f ) wave spectra, and (g–i) non-dimensional scaling of energy
E versus frequency F. Wave spectra in d–f are coloured by peak frequency as a visual aid. In (g–i), the power law (black line)
of E versus F for wind-generated, fetch-limited waves is shown with confidence intervals, and the fully developed limit (Emax,
Fmin) for purewind seas [51] is indicated in red. The dashed line at F = (2π )−1 indicates wave age= 1, andwave age increases
to the left (as F decreases). Only spectra with Hs > 0.3 m, the approximate detection limit of the moorings, are included in all
panels. Grey shading in d–f below 10−2 also represents the approximate detection limit. (Online version in colour.)

to capture some of the smallest waves near the detection limit, it is unlikely that the instruments
would miss recording large wave heights that exceed 1.0 m.

Turning to the wave energy spectra (figure 2d–f ), there are pronounced contrasts between the
open-water spectra and those from inside the sea ice edge. The open-water spectra (figure 2d)
exemplify a characteristic power-law relationship between energy and frequency in the high-
frequency spectral tail, i.e. the tail generally follows a consistent f −4 slope above the peak
frequency, fp. Some bimodal spectra are discernible with swell peaks near 0.1 Hz and separate
high-frequency peaks from local winds. Data from the 0–100 km �dist transition into ice (figure 2e)
appear to mostly have spectral tails with slopes steeper than f −4. This steeper slope is typical
for waves in sea ice [46,52], consistent with the notion that sea ice dissipates high-frequency
energy most effectively. This phenomenon is illustrated more clearly by supplemental surface
buoy spectra (electronic supplementary material, figure S2) in a separate dataset from the Arctic
Sea State [53].
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The dominant wave mode beyond 100 km �dist has a spectral signature that is unexpectedly
reminiscent of the open-water spectra, although with shorter wave periods. This wave mode has
all energy at high frequencies, and the spectral tails appear to follow the f −4 slope. Only two
spectra across the BGOS-SODA dataset at �dist > 100 km have fp lower than 0.2 Hz. The presence
of high-frequency energy far inside the ice edge is unexpected, given that sea ice is understood to
quickly dissipate high-frequency energy [15,46,52].

We next determine whether a spectrum is described by local wind-wave generation or is
dominated by swell using non-dimensional scaling of bulk wave parameters (see appendix A,
following [51]). Fetch-limited wave generation by local winds is expected to produce waves that
follow an empirical power law, equation (A 4), relating non-dimensional energy E to frequency
F, where E ∝ H2

s and F ∝ fp. Local wind waves are also expected to have a wave age c/U that
is less than 1, where c is the phase speed at fp and U is the 10 m wind speed. In open water
(figure 2g), there are many observations that meet these wind-wave criteria. There are also many
observations that fall below the E versus F line and have transitioned to wave age greater than 1
(indicating swell). At 0–100 km �dist in figure 2h, we can see that some spectra still follow local
wind generation, but a large cluster of data moves into the swell mode, falling below the power
law and towards greater wave age. The most distinct result is in figure 2i at �dist > 100 km, where
the data overwhelmingly follow the power law for local wind waves, and only two outlier spectra
resemble swell.

We also use an alternative approach to validate that the observations at �dist > 100 km are
local wind waves. This approach uses the wave spectra to estimate the local wind speed (see
appendix B, following [54,55]), whereas the non-dimensional scaling for E and F employed the
10 m wind speed (U10) from JRA reanalysis. We compare estimates of U10 from the BGOS-SODA
measurements with local wind speeds from JRA in figure 3. If U10 values predicted from BGOS-
SODA wave spectra match U10 values from reanalysis, this implies that the observed waves are
generated by local winds. When assuming the reanalysis to be truth, wave-based estimates of
U10 from �dist > 100 km have (i) root-mean-square error (RMSE) of 2.2 m s−1 for winds less than
12 m s−1 and (ii) relative error of 18% for winds greater than 10 m s−1. Open-water observations
have (i) RMSE of 2.2 m s−1 for winds less than 12 m s−1 and (ii) relative error of 16% for winds
greater than 10 m s−1. These statistics are quite close to those reported in [55], despite the possible
inaccuracy in using re-analysis as truth in this study. To obtain these results, a different directional
spreading parameter, Ip, is used in ice and in open water, as noted in appendix B. The wind-speed
estimation provides additional evidence that the spectra from �dist > 100 km represent waves
generated by local winds.

Finally, we consider the implied fetch that is consistent with each observed wind-wave
spectrum. In figure 4, we estimate an implied fetch based on the fetch-limited scaling relations
(as described in appendix A, following [51]). Fetch estimates can be calculated from either the
non-dimensional energy E or the frequency F in the BGOS-SODA measurements—differences
between the two fetch estimates correspond to scatter or bias relative to the power law in figure 2i.
Both estimates indicate that the majority of observed wind waves from beyond 100 km �dist

require less than 20 km of open-water fetch, and all measurements require less than 40 km. We
do not have colocated SAR images at times of the moorings’ wave measurements from beyond
100 km �dist, but SAR images from 18 July 2018 (two days prior to BGOS-A and BGOS-D wind-
wave observations) show open-water patches with length scales of O(10) km (figure 5). Wind
waves could arise in these open-water areas just as short waves develop in large lakes. The
apparent fetch in figure 5 from before (18 July 2018), near when (25 July 2018) and after (28 July
2018) local waves were reported appears broadly consistent with the implied fetch estimates in
figure 4.

In summary, multi-year observations from a seasonal ice zone in the Beaufort Sea reveal that at
distances beyond 100 km inside the sea ice edge, (i) there are no records of Hs > 1.0 m, (ii) there is a
peak in the frequency of occurrence of Hs near 0.5 m, and (iii) nearly all of the observed waves are
generated by local winds rather than swell propagating into sea ice. The observations also show
swell waves in the first 0–100 km of ice, and the maximum Hs in open water is 4.2 m. We next
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consider whether these characteristics can be captured in a global climate-scale coupled wave-ice
model.

(b) Simulated wave spectra in the Beaufort Sea
We now investigate how variations in wave-ice physics influence the simulation of ocean surface
waves in the presence of sea ice, with particular attention to reproducing the spectral shape of
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observed wind waves in partial ice (figure 2f ). At the model resolution (50 km, which is larger than
the estimated fetch required for the observed wind waves), it is not possible to resolve the small-
scale processes that occur in reality. Given this resolution limitation for climate-scale modelling,
we rather seek to understand the balance between wind input (Sin), attenuation by ice (Sice) and
scaling by SIC that results in wave spectra which best match the BGOS-SODA observations.

Figure 6 shows model results from the central Beaufort Sea during July, the month in which
the vast majority of wind-wave observations at �dist > 100 km in BGOS-SODA occur (electronic
supplementary material, figure S4c). Experiments IC4M3rad1 and IC4M7 have no spectra with
Hs > 0.1 m where SIC exceeds 15% in July 2018, so these experiments are omitted from
figure 6.

We first focus on the high-frequency portion of the spectrum. Across the model experiments,
IC4M1 (figure 6a,b) agrees most closely with the Beaufort Sea observations (figure 2f ) in that
its dominant wave mode at �dist > 100 km corresponds to the short wind waves. The agreement
with observations is particularly strong in the experiment that allows substantial wind input even
when SIC is high (figure 6b). Notably, IC4M1 is neither new nor complex. It is a simple exponential
function of period based on field experiments published in 1988 [35]. IC4M5 also has a wind-wave
spectral signature in the high frequencies (figure 6g,h). The FSD-M21 experiments damp all Hs to
less than 0.3 m before the waves reach 100 km �dist (not shown), and the spectra from the first 0–
100 km demonstrate that high-frequency energy is eliminated rapidly in ice (figure 6i). With FSD-
M21, allowing additional wind input has minimal impact on the simulated spectra (figure 6j). The
results for IC4M3rad1 and IC4M7 (not shown), which both depend on ice thickness, have even
stronger damping than FSD-M21.

Turning to the low-frequency portion of the spectrum, many of the experiments appear to have
too much low-frequency energy in ice because observations show little evidence of swell beyond
100 km inside the MIZ. IC4M1 is a notable exception in that its spectra at �dist > 100 km show
lower levels of swell. IC4M2, IC4M4 and IC4M5 all have much higher energy in the low-frequency
range than we see in observations. Note that spectra from IC4M5 show abrupt jumps in energy
because α is a piecewise (not smooth) function in that case (electronic supplementary material,
figure S1). FSD-M21 also favours the low frequencies, showing swell spectra at 0–100 km �dist

that have similarities to some observations in figure 2e, although most of those observations are
from October rather than July (electronic supplementary material, figure S4b). The low-frequency
attenuation rate may need to be stronger than that of IC4M2, IC4M4 and IC4M5 to improve
comparison with observations.
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Figure 6. Hourly mean wave spectra from coupled wave-ice model experiments (green and orange) during July 2018 in the
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figure 1c). For visual clarity, plots show model spectra (coloured by peak frequency) from only 200 randomly selected grid
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In summary, the different attenuation schemes produce a wide range of spectral shapes in the
July 2018 Beaufort Sea. A weak high-frequency attenuation rate (e.g. IC4M1 and IC4M5) permits
the development of local wind waves beyond 100 km �dist that resemble the observations. Spectra
from the simple scheme of IC4M1 with enhanced wind input most closely resemble the observed
spectra in this model.

(c) Simulated wave-affected extent across polar oceans
Recent studies have started using the area of sea ice where ocean surface waves are present as a
metric for model evaluation (e.g. [56]). Here, we investigate how uncertainty in wave-ice physics
impacts the simulation of wave-affected extent across hemispheres and seasons. We compute
the wave-affected extent as the total ocean area with SIC greater than 15% and Hs > 0.3 m (the
threshold of detection that is applied in the BGOS-SODA observations). The spread in wave-
affected extent between the attenuation schemes is substantial in both the Northern and the
Southern Hemispheres (figure 7).
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In the Arctic (figure 7a,b), schemes with the strongest attenuation result in a near-zero wave-
affected extent during part of the summer season. Weaker attenuation rates yield non-trivial
wave-affected extents even in the summer. The additional wind input (figure 7b) has a major
impact on the weakest attenuation rates—more than doubling the wave extent for IC4M4 and
IC4M5—but the schemes with strong damping of high-frequency energy are relatively unaffected.
IC4M1 (which most closely resembles BGOS-SODA observations in the Beaufort Sea) shows a
substantial increase in wave-affected extent when wind input is enhanced.

In the Southern Hemisphere (figure 7c,d), the spread between the schemes is larger than in
the Arctic. During the summer minimum ice extent, the wave-affected extent ranges from near-
complete coverage of all sea ice (IC4M4) to near-zero coverage (IC4M7). All methods besides
IC4M7 have substantial waves throughout most of the year. IC4M1 has a relatively low wave-
affected extent compared to other attenuation schemes even when supplied with additional wind
input. This is because IC4M1 has strong attenuation of the longest swells. IC4M3 has relatively
high wave-affected extent in the Antarctic winter compared to the other schemes, whereas it has
a relatively low extent in the Arctic winter—this asymmetry is due to its weak attenuation of only
the longest swells and strong attenuation at all shorter wavelengths.

Across the polar oceans, changing the model’s attenuation scheme can have substantial
impacts on the spatial extent of wave activity in sea ice. When the high-frequency attenuation of
a given method is relatively weak, allowing additional wind input for wave generation also has a
large impact on wave-affected extent. For some attenuation schemes (e.g. IC4M7, IC4M3rad1 and
FSD-M21), the high-frequency damping is so strong in ice that the additional wind input cannot
overcome it.

4. Discussion
Local wind waves that are generated far inside the MIZ may have impacts on sea ice evolution
and ocean mixing that have not been investigated. Wind waves could enhance ice melt through
overwash—occurring when waves cause water to spill over the edge of an ice floe—which is
an active area of research [57,58]. If local waves are strong enough to cause fracture, they could
reduce sea ice to small floe sizes. Lateral melt begins to play a critical role in Arctic summer
conditions when the floe diameter is less than 30 m [59]. The vast majority of local wind-wave
observations beyond 100 km �dist occur in July when the seasonal ice zone retreats over the
mooring locations (distribution of samples by month is provided in the electronic supplementary
material, figure S4). The SAR images in figure 5—along with observations of local wind waves—
took place during a melt event in July 2018. A possible role for local waves in ice melt should be
investigated further and considered in sea ice and climate model development.

Thus far, the quantitative impact of local wind waves on the sea ice floe size distribution
remains unclear. According to the wave fracture parametrization in [33] (which is used by the
model [3] in this study), a number of the observed wind-wave spectra have sufficient energy
to cause wave fracture, producing floes of O(10) metres (electronic supplementary material,
figure S7) where lateral melt would be important. However, in the coupled wave-ice model
experiments that show local wind-wave spectra in the Beaufort Sea (e.g. IC4M1, figure 6a,b),
this parametrization results in simulated floe sizes that are unrealistically small across the
polar oceans—IC4M1 has mean floe radii of 15 m (Arctic) and 7 m (Antarctic) at the end of the
experiment (not shown). The current implementation does not include subgrid-scale attenuation,
which may be important for short wind waves simulated on large spatial scales. An alternative
wave fracture parametrization from [60] only permits waves longer than 5 s to fracture sea ice, but
that restriction is due to a lower limit on floe diameter (set at 20 m). High-frequency waves have
not been a focus of fracture parametrizations. High-temporal-resolution observations of the floe
size distribution during wave fracture events are required to further develop our understanding
and inform modifications to these parametrizations.

If future work suggests that local wind waves are important for climate-scale modelling—
through their impact on ice fracture or other processes—there are various ways to improve their
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representation in coarse-resolution models. These could include modifications to WW3 (such
as extending the resolved frequency range and investigating alternative attenuation schemes),
subgrid-scale parametrizations of fetch-limited wave generation and attenuation, and machine-
learning emulation of very-high-resolution simulations or discrete element models that explicitly
represent more of the relevant processes. At the spatial resolution required for climate-scale
modelling, we cannot resolve the observed heterogeneity of the ice cover, and there will be
compensating errors in subgrid-scale processes. For example, in our simulations, enhanced
wind input may help to compensate for overestimated SIC (see SIC differences in electronic
supplementary material, figure S5). The representation of wave-ice physics and parametrizations
suited to climate-scale models may therefore differ from those suited to high-resolution models,
and reconciling these differences will be an ongoing challenge as wave-ice interactions are
included in coupled models (e.g. [61]) used for climate projections.

5. Conclusion
In this study, we first investigate wave spectra in a multi-year dataset (BGOS-SODA) from five
subsurface moorings in the Beaufort Sea under seasonal ice cover. Between the sea ice edge and
100 km inside it, observations show a range of peak frequencies, representing a mixture of wind
waves and swell. Beyond 100 km, the vast majority of waves measured (96 of 98 records) appear
to be local wind waves following the fetch-limited power law for local wind-wave generation,
and all 98 spectra have significant wave heights less than 1 m. We infer that these wind waves are
generated over short distances (typically less than 20 km) in patches of open water amid partial
ice cover, and they are observed in summer.

Secondly, we examine the impact of varying wave-ice physics in a global coupled wave-ice
model. The model can capture broad characteristics of the BGOS-SODA observations beyond
100 km inside the ice edge (with a focus on July 2018) in climate-scale experiments that vary
wave attenuation and wind input in ice. A weak high-frequency attenuation rate (as in the
IC4M1 scheme) is required to simulate local wind waves, and the agreement with observations
in this model is stronger when additional wind input for wave generation is permitted in high
concentrations of sea ice. Several attenuation schemes investigated here show swell waves at large
distances inside the sea ice edge, which are not supported by BGOS-SODA observations in the
Beaufort Sea. Globally, we find that changing the attenuation scheme has a remarkable impact on
the spatial extent of waves in ice. Increasing the wind input in ice can have a pronounced effect,
but only when the attenuation rate of high frequencies is relatively weak.

Local wind waves in partial sea ice cover may act to enhance melting during the seasonal
ice retreat by the fracturing of sea ice into small floes (of diameter less than approximately 30 m),
overwash, ocean mixing and eddy generation. However, these mechanisms remain uncertain and
require further observation and investigation. In particular, this work motivates reconsideration
of how high-frequency waves should be treated in fracture parametrizations for climate models.
Representing complex small-scale interactions between waves and sea ice in climate-scale models
is a formidable challenge, but these efforts may be necessary to improve the simulation of sea
ice variability and trends [3,38,62]. Observational constraints on large-scale features (such as
the wave-affected extent) and on small-scale features (such as the spectral shape of waves in
sea ice and the floe size distribution across seasons and basins) will all be required to advance
parametrizations of wave-ice physics in the next generation of climate models.

Data accessibility. BGOS data were collected and made available by the Beaufort Gyre Exploration Program
at Woods Hole Oceanographic Institution in collaboration with Fisheries and Oceans Canada at the
Institute of Ocean Sciences. The BGOS datasets used in this study are available at digital.lib.washington.
edu/researchworks/handle/1773/46260. The SODA data are available at digital.lib.washington.edu/
researchworks/handle/1773/46919. SWIFT buoy data were collected by the Arctic Sea State programme and
are available at www.apl.uw.edu/swift. NOAA/NSIDC Climate Data Record of SIC estimates are available
at nsidc.org/data/G02202. The model output is available at https://doi.org/10.5281/zenodo.6213441
(IC4M1) [67], https://doi.org/10.5281/zenodo.6213793 (IC4M2) [68], https://doi.org/10.5281/zenodo.
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6214364 (IC4M3rad1) [69], https://doi.org/10.5281/zenodo.6214555 (IC4M4) [70], https://doi.org/10.5281/
zenodo.6214998 (IC4M5) [71], https://doi.org/10.5281/zenodo.6212423 (IC4M7) [72] and https://doi.org/
10.5281/zenodo.6212232 (FSD-M21) [73]. The model code is available at github.com/ESCOMP/cesm,
github.com/lettie-roach/CESM_CICE5 and github.com/vtcooper/WW3-CESM.
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Appendix A. Non-dimensional scaling for wind-generated ocean waves
To interpret wave statistics, we employ non-dimensional scaling for wind-generated waves
following [51]. These relations enable separation of wind waves from swell and provide estimates
of the implied fetch for observed wind waves in partial ice cover. We calculate the following
non-dimensional variables for the wave energy E, frequency F and fetch distance X:

E =
(

gHs

4U2
10

)2

, F = fpU10

g
and X = gx

U2
10

, (A 1)

where g is the gravitational acceleration; U10 is the 10 m wind speed at the location of each in situ
observation and model grid cell from JRA-55 reanalysis [29,30]; Hs is the significant wave height,

defined as 4
√∫

E(f ) df ; fp is the peak frequency; and x is the fetch, i.e. the distance over which
waves are generated by local winds. Values of Hs and fp are measured in situ and provided in
model output. The fetch x is not measured but rather inferred for specific wind waves as described
below; we refer to this variable as the implied fetch.

In the marginal sea region of the observations considered, wave generation is generally limited
by fetch rather than wind duration [1,63]. Several studies have developed empirical estimates of
power laws for E versus X and F versus X that describe wind-generated waves in a fetch-limited
regime. In [51] these estimates were combined into the relations

E = (7.5 ± 2.0) × 10−7X0.8 (A 2)

and
F = (2.0 ± 0.3)X−0.25, (A 3)

which apply at least until reaching a fully developed limit for pure wind seas at Emax = (3.6 ±
0.9) × 10−3 and Fmin = 0.13 ± 0.02. Using equation (A 1), we reformulate these power laws in

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

12
 S

ep
te

m
be

r 
20

22
 

https://doi.org/10.5281/zenodo.6214364
https://doi.org/10.5281/zenodo.6214555
https://doi.org/10.5281/zenodo.6214998
https://doi.org/10.5281/zenodo.6214998
https://doi.org/10.5281/zenodo.6212423
https://doi.org/10.5281/zenodo.6212232
https://doi.org/10.5281/zenodo.6212232
https://github.com/ESCOMP/cesm
https://github.com/lettie-roach/CESM_CICE5
https://github.com/vtcooper/WW3-CESM


15

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210258

...............................................................

terms of the variables available from measurements and modelling, E and F:

E = (6.9 ± 3.8) × 10−6F−3.2. (A 4)

We identify waves that are accurately described by fetch-limited local wind generation, i.e.
wind waves, as those that fall within the uncertainty bounds of the line defined by the power
law in equation (A 4). If a spectrum has less energy E than predicted by the wind-wave power
law for a given frequency F and it has a wave age greater than 1, we determine that the spectrum
represents swell, i.e. long-period waves produced by non-local winds.

Wave age, a non-dimensional parameter c/U defined by the ratio of the dominant phase speed
cp to the wind speed U10, can also distinguish swell from local wind waves. We take cp = g/(2π fp)
following the deep-water limit for surface gravity waves. When the wave age exceeds 1, waves
travel faster than the winds. We note that the wave age can be expressed in terms of F using
equation (A 1) such that c/U = (2πF)−1, and the wave age is greater than 1 when F is less than
1/(2π ).

Taking only the spectra that appear to be fetch-limited local wind waves (based on equation
(A 4) and wave age), we can calculate an implied fetch x corresponding to each wind-wave
spectrum. This dimensional variable x is recovered by solving for the non-dimensional X in
equation (A 2) or (A 3) based on the measured energy E or frequency F, respectively, and then
using equation (A 1) to restore the dimension. The implied fetch is an estimate of the open-water
distance that would be required for local winds to generate a given wind-wave spectrum.

Appendix B. Wind-speed estimates from the equilibrium range
Surface wind speed can be estimated from the equilibrium range in the high-frequency end of
the wave spectrum (the ‘spectral tail’). The equilibrium range is the portion of the wave spectrum
where the source terms—wind input, nonlinear transfer and dissipation—are balanced [64]. We
follow the methods from [54,55] that calculate a friction velocity u∗ by assuming E(f ) ∝ u∗f −4,
where E(f ) is energy and f is frequency. This process begins with

E(f ) = E0f −4, where E0 = 4gβIpu∗
(2π )3 , (B 1)

and we compute E0 as the mean of f 4E(f ) for the frequencies in the equilibrium range. The
equilibrium range is identified as the 20 consecutive frequencies (all higher than fp, up to a
maximum of 0.5 Hz) that minimize standard error on the fit to f −4. We require a minimum of
10 data points in the equilibrium range. The constant β is an empirical constant that is set to 0.009
based on results in [55]; Ip adjusts for directional spreading of waves and ranges from 1.9 (wide)
to 3.1 (narrow) [65] with a typical value of 2.5 [54]. For observations beyond 100 km �dist, we use
Ip = 1.9, expecting that directional spreading may be elevated in partial ice cover. For observations
in open water, we use the typical value of Ip = 2.5.

We then have an estimate of u∗ which we can relate to the 10 m wind speed U10 by assuming
a logarithmic wind profile in the boundary layer,

U(z) = u∗
κ

ln
(

z
z0

)
, (B 2)

with the von Karman constant κ = 0.41, z = 10 m, and ocean surface roughness length z0. This is
assumed to follow the Charnock relation [66],

z0 = αu2∗
g

, (B 3)

although the presence of ice may affect z0, introducing some additional uncertainty. Following
eqn (16) in [55], α is determined by wave age according to

α = 0.14
(

u∗
cp

)0.61
, (B 4)
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where cp is the phase speed at the peak frequency. With these assumptions, we can estimate U10
from the E(f ) measured by BGOS-SODA subsurface moorings, which are located roughly 30–45 m
beneath the ocean surface.
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